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Abstract. A method of calculation of inhomogeneity microfield tensors in Debye plasma, using the Mayer-
Mayer cluster expansion, is presented. The octupole inhomogeneity tensor of the ion microfield at a neutral
emitter has been calculated for the first time. The quadrupole inhomogeneity tensor of the ion microfield
at a neutral emitter has been recalculated. We have performed numerical calculations for plasma consisting
of atoms, electrons and singly or doubly charged ions.

PACS. 52.20.-j Elementary processes in plasmas – 52.25.-b Plasma properties – 32.70.Jz Line shapes,
widths, and shifts

1 Introduction

The main source of asymmetry of the hydrogen spectral
line shapes formed in plasma is the inhomogeneity of the
ion microfield. Kudrin and Sholin [1,2] noticed the fact
for the first time. They considered this problem in the
nearest neighbour approximation. In the Holtsmark ap-
proximation, in order to describe the gradient of the lo-
cal ion microfield, Demura and Sholin [3] adapted the
Chandrasekhar and von Neumann function B(β), which
originally was introduced in [4] for the description of the
gravitational field produced by groups of stars. The gra-
dients of microfield strength in plasma, with the inclusion
of screening effects characteristic of plasma, was calcu-
lated in papers [5,6]. However in papers [7–13] the screen-
ing and the ion-ion correlation effects were taken into ac-
count simultaneously. As regards the importance in the
line-asymmetry formation, the second great part is played
by the quadratic Stark effect, for which correction to the
energy eigenvalues of the emitter in plasma is proportional
to R−4

0 , where R0 is the mean ions-perturbers distance.
References [2,14] show that the second order correction in
the perturbation theory (PT) for the quadrupole interac-
tion and the first order correction in PT for the octupole
interaction are proportional to R−4

0 . For this reason, to
obtain correct description of the profile asymmetry of the
hydrogen and hydrogen-like ion, the Hamiltonian of the
emitter, immersed in plasma, should also include the oc-
tupole interactions.

The main aim of the present paper is calculation of
the inhomogeneity of the octupole tensor E

(3)
ijk for the ion

microfield in plasma at the position of a typical atom. In
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all experiments, in which the hydrogen lines profiles were
investigated (see e.g. [15] including an extensive list of
references), the plasma parameter (see Eq. (4)) was Γ ≤
0.25. Plasmas consisted of singly charged ions (and — at
the very most — doubly charged ions) and electrons. For
such Debye plasmas the approximation proposed by Mozer
and Baranger in [16] is accurate enough for calculation
of the microfield distribution function Wa(β) as well as
the quadrupole E

(2)
ij and the octupole E

(3)
ijk inhomogeneity

tensors.
In experiment [17], for electron density Ne ∼

1019 cm−3, the plasma consisted of almost solely He++

ions. We again calculated the inhomogeneity quadrupole
tensor E

(2)
ij , because (i) there are no numerical values of

the tensor for such plasma as that in the experiment [17],
and (ii) numerical results of the tensor for singly ionized
plasma published in [7, 9b], are differ slightly from one
another.

2 Emitter-plasma interaction

The Hamiltonian of a typical emitter immersed in plasma
can be described as follows:

H = H0 + Uae + Uee + Uai + Uii + Uie, (1)

where U is the Coulomb interaction indexed by a for the
emitter, i for ions, and e for electrons. The interaction be-
tween the neutrals, i.e., atoms, is neglected. Interaction U
varies with time. The relaxation time measure of the ionic
microfield component in plasma is τi ≈ Fi/Ḟi ≈ vi/Ri,
where vi is the mean thermal velocity of ions, while Ri is
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the mean distance between them, resulting from the rela-
tionship (4π/3)R3

i Ni = 1, where Ni is ions density. Sim-
ilarly, for the electronic microfield component the relax-
ation time is τe ≈ ve/Re. These times fulfill the following
relation

τe � ∆t � τi, (2)

which allows us, via the Poisson equation,

∇2φα(r) = −4πeNe(1 − exp(eφα(r)/kT ))
− 4πZαeδ(r − Rα) (3)

to calculate the potential (averaged in time ∆t) produced
at the point r by the statistical α-th ion at position Rα

in the sea of free electrons. If the plasma parameter Γ
satisfies the relation, e.g. [18],

Γ = 〈eφα(r)〉/kBT =
1
3
Z5/3

α a2 � 1, (4)

where kB is the Boltzmann constant, T is temperature,
Zαe is the electric charge of the perturbing ion, a = R0/D

is the screening parameter with D =
√

kT/(4πe2Ne) the
electronic Debye length, and R0 — the distance defined by
the relationship (4/15)(2π)3/2R3

0Ne = 1 (see, e.g., [16]),
we obtain the Debye potential:

φα(r) =
Zαe

|r − Rα| exp(−|r− Rα|/D). (5)

In the case of strongly coupled plasmas, i.e. when the
plasma parameter does not fulfill the relation given by
equation (4), the potential φα(r) resulting from equa-
tion (3), is an even shorter-range potential than the Debye
one.

In this way, for weakly-coupled plasmas (Γ � 1), the
sum

Ueff
ai = Uai + Uie, (6)

is well approximated by the effective interaction emitter-
ions, when the Debye-screened potential for ions is used:

φ(r) =
∑

α

Zαe

|r − Rα| exp(−|r − Rα|/D). (7)

In our paper [19] we showed that the sum of the interac-
tions

Ueff
ae = Uae + Uee, (8)

is well approximated by the effective interaction described
by the Coulomb potential for electrons cut-off at the dis-
tance equal to the electronic Debye length. Then the
Hamiltonian can be written as follows

H = H0 + Ueff
ae + Ueff

ai , (9)

with the assumption that the ion-ion correlation (caused
by the Uii interaction) is included in the statistics of quan-
tity Ueff

ai .

2.1 The multipole expansion

The multipole expansion of the potential produced by
(pseudo) ions in the neighbourhood of point r = 0 is
given by

φ(r) = φ − r · E− 1
6

∑

ij

cijE
(2)
ij − 1

30

∑

ijk

cijkE
(3)
ijk

+
1
6
r2∇ · E +

1
10

r2r · ∇(∇ · E) + · · · (10)

The first four terms are the monopole, dipole, quadrupole,
and the octupole ones, respectively. The fifth term is con-
nected with the quadrupole term and the sixth term —
with the octupole term. The quantities: cij = 3xixj−r2δij

and cijk = 5xixjxk − r2(xiδjk + xjδik + xkδij) are the
quadrupole and the octupole tensors, whereas:
– the electric potential

φ = φ(0) =
∑

α

Zαe exp(−Rα/D)/Rα, (11)

– the electric field

E = −∇φ(r)|r=0

=
∑

α

Zαe(1 + Rα/D) exp(−Rα/D)Rα/R3
α, (12)

– the symmetrical (E(2)
ij = E

(2)
ji ) and of trace-

less (Tr{E(2)
ij } = 0) inhomogeneous electric field

quadrupole tensor

E
(2)
ij =

(
∂Ei(r)
∂xj

− 1
3
δij∇ · E

)∣∣
∣
∣
r=0

, (13)

– the symmetrical
(
E

(3)
ijk = E

(3)
jik = E

(3)
kji = E

(3)
kij = E

(3)
jki = E

(3)
ikj

)

and of “traceless” (
∑

ij E
(3)
ijkδij = 0 for k = 1, 2, 3)

inhomogeneous electric field octupole tensor

E
(3)
ijk =

(
∂2Ei(r)
∂xj∂xk

− 1
5

[
∂

∂xi
∇ ·E(r)δjk

+
∂

∂xj
∇ · E(r)δik +

∂

∂xk
∇ ·E(r)δij

])∣
∣∣
∣
r=0

, (14)

– the divergence of the electric field

∇ ·E = ∇ · E(r)|r=0 = −φ(0)
D2

+ 4π
∑

α

Zαeδ(Rα),

(15)
– and the gradient of the divergence of the electric field

∇(∇ · E) = ∇(∇ ·E(r))|r=0 , (16)

are calculated in point r = 0. From the symmetry
property it follows results that the quadrupole tensor
has five independent components: Exx, Exy, Exz, Eyz ,
Ezz , whereas the octupole tensor has seven indepen-
dent components: Exxy, Exxz, Exyy, Exyz, Exzz , Eyzz ,
Ezzz .
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The divergence ∇ ·E requires a supplementary comment.
In paper [7], in the multipole expansion, the term pro-
portional to the divergence was neglected as a small one
in comparison with the quadrupole term. Justification
of such a treatment of this term was given by calcula-
tion in [20]. In paper [20], we showed that divergence
∇·E(β), as a function of the field strength in reduced scale
β = F/F0 (where F0 is the so-called Holtsmark field),
is piecewise positive or negative in such a way that the
mean value of the divergence

∫ ∞
0 ∇ · E(β)Wa(β)dβ = 0,

is equal to zero. This result is not surprising, because the
total charge of plasma is equal to zero. On the contrary,
in paper [6] it was emphasized that the term proportional
to the divergence has a significant influence on the line
shapes formed in plasma. Such disagreement in estima-
tion of the importance of that term is caused by the fact
that in [6] only the electronic component of the divergence
was calculated, whereas the ionic contribution was omit-
ted. Such an incomplete calculation was presented in [9]
as well as in all the earlier papers of the authors cited in it.
Similarly, an incomplete calculation was performed in pa-
per [13], corrected (by introduction of an additional term,
taken ad hoc, by no means resulting from the multipole
expansion) in order to get the mean value of charge den-
sity equal to zero. After such a correction results [13] are
formally correct. We would like to notice that all the cal-
culations mentioned above were performed for the exactly
neutral point. Actually, even the neutral emitter interact-
ing with free electrons causes some modification of the
distribution of electron sea charge density. In our opinion,
at the point r = 0 and in its near neighbourhood this den-
sity is equal to zero, because the (free electron)–(atomic
nucleus) distance cannot be arbitrarily small. (About in-
teractions in plasma at small interparticle distance — see
e.g. [21]). Then, of course, the divergence of the microfield
is equal to zero also, ∇ · E = 0. Ions also cannot locate
by themselves arbitrarily close to the point r = 0. For ex-
ample, the approach of an ion to the atom down to a
distance smaller than about 3n2a0 (double the Bohr ra-
dius) causes ionization of the atom, so it stops being the
neutral emitter. This ionization effect can be taken into
account by introduction of a critical maximum value βc

for the distribution Wa(β). However, in the case of elec-
trons it is difficult to precisely determine the reference
volume at point r = 0, i.e. volume free from the electric
charge. We can estimate the influence of this volume on
the resultant value of the plasma-emitter interaction en-
ergy. Let us assume that the emitter is located in a cavity
of the spherical shape and of the radius Rs, at the center in
point r = 0; inside the sphere the density of plasma elec-
tric charge equals zero. We consider only such cases when
the nearest ion-emitter distance is greater than Rs (wide
ionization problem). Then, we can calculate the resultant
potential φ

′
(r)as a difference between the potential φ(r)

and the potential φs(r) produced by the sphere of radius
Rs and of density equal to the electron sea charge density:

φ
′
(r) = φ(r) − φs(r). (17)

The potential φs(r) produced by the sphere can be calcu-
lated from the Poisson-Laplace equation

∇2φs(r) =
{

φ(r)/D2, for r < Rs,

0, for r ≥ Rs.
(18)

First of all, we are interested in the strength of the elec-
tric field in the vicinity of the point r = 0, which is con-
venient to calculate using — in the above equation — the
multipole expansion for the potential φ(r) given by equa-
tion (10). In such a case the potential satisfying the above
Poisson-Laplace equation is as follows

φs(r) = −1
2
s2φ +

1
6
s2r ·E +

1
10

s2
∑

ij

cijE
(2)
ij

+
1
6
r2∇ ·E +

1
10

r2r · ∇(∇ ·E) + · · ·, (19)

where s ≡ Rs/D. Finally, the multipole expansion of the
emitter-perturbing (pseudo) ions interaction is given by

Ueff
ai = (Z − 1)e

(
1 +

1
2
s2

)
φ −

(
1 +

1
6
s2

)
d ·E

− 1
6

(
1 +

1
10

s2

) ∑

ij

QijE
(2)
ij

− 1
30

(
1 +

1
14

s2

) ∑

ijk

OijkE
(3)
ijk + · · · (20)

The quantities: d = −er is the dipole moment, Qij =
−ecij and Oijk = −ecijk are the quadrupole and the
octupole moment tensors of the emitter; whereas Ze
is a charge of the emitter. So, using symmetry of the
quadrupole Qij and for the octupole Oijk tensors, which
are the same as corresponding symmetry of the inhomo-
geneous electric field quadrupole E

(2)
ij and octupole E

(3)
ijk

tensors, the sums in equation (20) can be written as fol-
lows:
∑

ij

QijE
(2)
ij = (2Qxx + Qzz)E(2)

xx + (Qxx + 2Qzz)E(2)
zz

+ 2QxyE
(2)
xy + 2QxzE

(2)
xz + 2QyzE

(2)
yz , (21)

and
∑

ijk

OijkE
(3)
ijk = (4Oxxy + Oyzz)E(3)

xxy

+ (6Oxxz + 3Ozzz)E(3)
xxz + (4Oxyy + Oxzz)E(3)

xyy

+ (Oxyy + Oxzz)E(3)
xzz + 6OxyzE

(3)
xyz

+ (Oxxy + Qyzz)E(3)
yzz + (4Ozzz + 3Oxxz)E(3)

zzz .

(22)

Moreover, we want to observe that the interaction
(Eq. (20)) contains no terms proportional to the diver-
gence of the electric microfield strength, in contrast with
equation (10). The significance of the new terms propor-
tional to s2 is very small. We are not able to precise define
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the value of Rs, but even if we assume that the radius of
the sphere not containing a free plasma charge (reference
volume) equals the classical atom radius Rs = 3/2n2a0,
then the resulting contribution of that reference volume to
the resulting interaction energy Ueff

ai is negligible as well
anyway.

3 Distribution functions of microfield
inhomogeneity tensors

In order to describe mathematical formulas in a compact
form it is convenient to introduce, similarly as in refer-
ence [7], a formal vector G, which represents the indepen-
dent components of the inhomogeneity microfield tensor.
For the description of the quadrupole inhomogeneity ten-
sor we have introduced a five-dimensial vector

G(2) = {G(2)
n } ≡ {Exx, Exy, Exz, Eyz, Ezz}, (23)

however for the octupole inhomogeneity tensor a seven-
dimensial vector is needed

G(3) =
{

G(3)
n

}

≡ {Exxy, Exxz, Exyy, Exyz, Exzz , Eyzz, Ezzz}. (24)

(Any tensor G(t) can be described similarly.) Then the
joint probability distribution function for the microfield
strength E and the microfield inhomogeneity tensor is
given by [7]

W (E,G) =
1

(2π)3+m

∫
d3k dmσ

× exp{−i [k ·E + σ · G]}F (k, σ), (25)

where m ≡ nmax is the dimension of the vector G. In the
case of the plasma containing ions of one kind only (i.e.
qα = Zpe = const) with density Np, the Fourier transform
has the form

F (k, σ) = exp

{ ∞∑

l=1

N l
p

l!
hl(k, σ)

}

. (26)

The function hl(k, σ) corresponds to the increasing orders
in the cluster expansion method [22,16]. The general ex-
pression for a function of lth order is

hl(k, σ) =
∫

ϕ1ϕ2 · · ·ϕl

× gl(R1,R2, · · · ,Rl)dR1dR2 · · · , dRl, (27)

with
ϕα = exp [i(k · Eα + σ · Gα)] − 1, (28)

where gl is the l-body correlation function depending on
the configuration of l ions located at R1,R2, · · ·,Rl.

For calculations of the line profiles, the average of
the microfield inhomogeneity tensor 〈G〉E alone is suffi-
cient [3–11,13], because contributions of the quadrupole,

octupole and higher order terms to the line profile, are
considerably lesser than the contribution from the dipole
term. They are defined by

〈Gn〉E ≡
∫

dmGGnW (E,G)/W (E) (29)

and can be calculated [4] from

W (E)〈Gn〉E =

− i

8π3

∫
d3k exp(−k ·E) [∂F (k, σ)/∂σn]σ=0 . (30)

For small |σn|, the Fourier transform has the series expan-
sion

F (k, σ) 
 F (0)(k, σ) +
m∑

n=1

F (1)
n (k)σn, (31)

where

F (1)
n (k) = F (0)(k)

∞∑

l=1

N l
p

l!
hl,n(k) (32)

with
hl,n(k) = [∂hl(k, σ)/∂σn]σ=0 . (33)

The function F (0)(k) is the Fourier transform of the mi-
crofield distribution function W (E) given by

F (0)(k) = exp

{ ∞∑

l=1

N l
p

l!
h

(0)
l (k)

}

(34)

with h
(0)
l (k) ≡ hl(k,0), whereas the microfield distribu-

tion function is:

W (E) =
1

(2π)3

∫
d3k exp(−ik · E)F (0)(k). (35)

In reference [23] it was showed that in the case when the
Debye potential is valid — a plasma model is internally
coherent- when the group expansion terms are taken into
account up to the two-body (pseudo)ion-ion correlations
term. Therefore, in equations (26), (32), and (34) the ex-
pansions can be limited to the first two terms only. Then
the derivate of the Fourier transform can be written

[∂F (k, σ)/∂σn]σ=0 =
[
Nph1,n(k) +

1
2
N2

p h2,n(k)
]

F (0)(k)

(36)
with

F (0)(k) = exp
[
Nph

(0)
1 (k) +

1
2
N2

p h
(0)
2 (k)

]
. (37)

The functions h(k) resulting from equation (27) can be
written as follows:
– one-body functions

h
(0)
1 (k) =

∫
g1(R1) [exp(ik · E1) − 1]d3R1 (38)

and

h1,n(k) = i

∫
g1(R1)G1,n exp(ik ·E1)d3R1; (39)
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– two-body functions

h
(0)
2 (k) =

∫
g2(R1,R2) [exp(ik ·E1) − 1]

× [exp(ik ·E2) − 1] d3R1d
3R2 (40)

and

h2,n(k) = i

∫
d3R1d

3R2g2(R1,R2)G1,n exp(ik · E1)

× [exp(ik · E2) − 1]G2,n exp(ik ·E2)
× [exp(ik · E1) − 1] . (41)

In the case of the quasi-neutral plasma consisting of
atoms, ions with charge Zpe and the density Np and elec-
trons of density Ne, the one-body correlation function at
a neutral point (for a H-atom) is g1 = 1, whereas the
two-body correlation function is given by the expression,
cf. [7,16,24],

g2 = −2(2π)1/2

15
Z2

pa3 exp (−|R1 − R2|/Dp)
|R1 − R2|/D

, (42)

where Dp = D/
√

1 + Zp is the plasma Debye length.
In spherical coordinates (R, θ, and ϕ), the ionic mi-

crofield strength Eα and the components of the inhomo-
geneity tensors G

(t)
α,n, can be written as follows:

Eα = −E(Rα)Rα/Rα, (43)

G(t)
α,n = −G(t)(Rα)A(t)

n (θα, ϕα). (44)

The quantity E(Rα) is the radial contribution to the
field given by equation (12). The radial contribution to
the quadrupole inhomogeneity tensor described by equa-
tion (13) is

G(2)(Rα) =
Zpe

R3
α

[
1 + Rα/D + (Rα/D)2/3

]
exp(−Rα/D),

(45)
while the five components depending on angles are as fol-
lows:

A(2)
xx =

√
6

2
(C2

2 + C2
−2) − C2

0 , A(2)
xy = −i

√
6

2
(C2

2 − C2
−2),

A(2)
xz = −

√
6

2
(C2

1 − C2
−1), A(2)

yz = i

√
6

2
(C2

1 + C2
−1),

A(2)
zz = 2C2

0 , (46)

where Cl
m(θ, ϕ) =

√
4π/(2l + 1)Ylm(θ, ϕ). The radial con-

tribution to the octupole inhomogeneity tensor described
by equation (14) is

G(3)(Rα) =
Zpe

R4
α

[
1 + 3Rα/D + 6(Rα/D)2 + (Rα/D)2/5

]

× exp(−Rα/D), (47)

while the seven components depending on angles are as
follows:

A(3)
xxy = −i

√
3

6
[C3

1 + C3
−1 −

√
15(C3

3 + C3
−3)],

A(3)
xxz =

√
30
6

(C3
2 + C3

−2) − C3
0 ,

A(3)
xyy =

√
3

6
[C3

1 − C3
−1 +

√
15(C3

3 − C3
−3)],

A(3)
xyz = −i

√
30
6

(C3
2 − C3

−2),

A(3)
xzz = −

√
12
3

(C3
1 − C3

−1),

A(3)
yzz = i

√
12
3

(C3
1 + C3

−1),

A(3)
zzz = 2C3

0 . (48)

Applying a similar calculation technique as in [16,24] for
calculation of the microfield distribution function, and as
in our earlier papers [7,25] for calculations of the average
microfield gradients — we have introduced also the auxil-
iary functions Ψ(v). Then, the contributions of one-body
and two-body clusters in equations (38)–(41), using the
auxiliary functions, can be written:

Nph
(0)
1 = −x3/2Ψ

(0)
1 (v),

1
2
N2

p h
(0)
2 = x3/2Ψ

(0)
2 (v),

Nph
(2)
1,n = −i

5
(32π)1/2

E0

R0
Ψ

(2)
1,n(v)A(2)

n (θk, ϕk),

1
2
N2

p h
(2)
2,n = −i

5
(32π)1/2

E0

R0
Ψ

(2)
2,n(v)A(2)

n (θk, ϕk),

Nph
(3)
1,n =

15
28

E0

R2
0

Ψ
(3)
1,n(v)A(3)

n (θk, ϕk),

1
2
N2

p h
(3)
2,n =

15
28

E0

R2
0

Ψ
(3)
2,n(v)A(3)

n (θk, ϕk). (49)

The new variables are defined as follows: v = ax1/2 and
x = kE0, whereas the angles θk and ϕk describe the direc-
tion of k vector in the coordinate system xyz. The one-
body auxiliary dipole function

Ψ
(0)
1 (v) =

15
(8π)1/2

Z−1
p

∫ ∞

0

dyy2[1 − j0(ε)], (50)

and the two-body auxiliary dipole function

Ψ
(0)
2 (v) = − 15

(8π)1/2

√
1 + Zpv

3
∑∞

l=0(−1)l(2l + 1)

× ∫ ∞
y1=0 dy1y

2
1

∫ y1

y2=0 dy2y
2
2

×[jl(ε1) − δl,0][jl(ε2) − δl,0]fl〉(u1)fl〈(u2) (51)

are analogous (for Zp = 1 — the same ones) as in pa-
pers [16,24]. The function jl(ε) is the Spherical Bessel
Function of order l. The next new variables are defined
as follows:

y = (ke)−1/2R and u =
√

1 + Zpvy, and

ε(v, y) = kE(R) = Zpy
−2(1 + vy) exp (−vy) ; (52)
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and functions fl〉(u) and, fl〈(u), defined according to [24],
are given by

fl〉(u) = (−1)lul

(
d

udu

)l (
e−u

u

)
, (53)

and

fl〈(u) = i−ljl(iu) = ul

(
d

udu

)l ( sinh u

u

)
. (54)

For the quadrupole auxiliary functions we have derived
the expressions

Ψ
(2)
1 (v) = 6

∫ ∞

0

dyy2γ(2)(v, y)j2(ε) (55)

and
Ψ

(2)
2 (v) = 12Zp

√
1 + Zpv

3I(2)
p (v), (56)

however for the octupole auxiliary functions we have de-
rived the expressions

Ψ
(3)
1 (v) =

14
(2π)1/2

∫ ∞

0

dyy2γ(3)(v, y)j3(ε) (57)

and
Ψ

(3)
2 (v) =

28
(2π)1/2

Zp

√
1 + Zpv

3I(3)
p (v); (58)

where

I(t)
p (v) =

∫ ∞

y1=0

dy1y
2
1

∫ y1

y2=0

dy2y
2
2γ

(t)(v, y1)

×
{

i

2t + 1

∞∑

l=0

(i)l(2l + 1)jl(ε2)fl〉(u1)fl〈(u2)

×
[ ∞∑

l′=0

(i)l′(2l′ + 1)jl′(ε1)
(
Ct0

l0,l′0
)2

]

+ (−i)t+1jt(ε1)f0〉(u1)f0〈(u2)
}

, (59)

whereas

γ(2)(v, y) = (Zpe)−1(vD)3G(2)(R)

= y−3
[
1 + vy + (vy)2/3

]
exp (−vy) , (60)

and

γ(3)(v, y) = (Zpe)−1(vD)3G(3)(R)

= y−4
[
1 + 3vy + 6(vy)2 + (vy)3/5

]
exp (−vy) , (61)

while Ct0
l0,l′0 is the Clebsch–Gordan coefficient.

Finally, the average of the microfield inhomogeneity
tensors given by equation (29) are as follows:

– for the quadrupole

〈E(2)
ij 〉E =

5
(32π)1/2

E0

R0
B(2)

a (β)A(2)
ij (θE , ϕE), (62)

p = 1

p = 2

( 
0 

)

dipole

x10

0 1 2 3 54υ 
0.0

0.5

1.0

1.5

 Ψ
p(

υ
)

Fig. 1. The one-body Ψ
(0)
p=1 and the two-body 10Ψ

(0)
p=2 auxil-

iary dipole functions at a neutral emitter (Ze = 0) versus the
quantity v. The solid lines are obtained for the singly charged
perturbers (Zp = 1), while the dashed lines are obtained for
doubly charged perturbers (Zp = 2). The points represent orig-
inal Mozer-Baranger’s [16] results.

– for the octupole

〈E(3)
ijk〉E =

15
28

E0

R2
0

B(3)
a (β)A(3)

ijk(θE , ϕE), (63)

where

B(t)
a (β) =

2
π

β2/Wa(β)

×
∫ ∞

0

dxx2
[
Ψ

(t)
1 (ax1/2) + Ψ

(t)
2 (ax1/2)

]

× exp
{
−x3/2

[
Ψ

(0)
1 (ax1/2) − Ψ

(0)
2 (ax1/2)

]
jt(βx)

}
;

(64)

whereas the microfield distribution function is

Wa(β) =
2
π

β2

∫ ∞

0

dxx2

× exp
{
−x3/2

[
Ψ

(0)
1 (ax1/2) − Ψ

(0)
2 (ax1/2)

]}
j0(βx).

(65)

In a particular case, in the coordinate system x′y′z′ with
E||0z′, the effective atom-(plasma) ions interaction is
given by the expression:

Ueff
ai 
 −d · E− 5

(32π)1/2

eE0

2R0
B(2)

a (β)(3z′2 − r′2)

− 15
28

eE0

6R2
0

B(3)
a (β)z′(5z′2 − r′2) + ... (66)

4 Numerical results

Figures 1, 2, and 3 present the one-body and the two-
body, the dipole, the quadrupole, and the octupole aux-
iliary functions. These results show that ordinates of the
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Fig. 2. The one-body Ψ
(2)
p=1 and the two-body Ψ

(2)
p=2 auxiliary

quadrupole functions at a neutral emitter versus the quan-
tity v. The lines have the same meaning as in Figure 1. The
points represent our earlier results [7].
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Fig. 3. The one-body Ψ
(3)
p=1 and the two-body Ψ

(3)
p=2 auxiliary

octupole functions at a neutral emitter versus the quantity v.
The lines have the same meaning as in Figure 1.

two-body function are much lesser than the corresponding
values of the one-body function Ψ

(t)
2 � Ψ

(t)
1 in any case.

Such a relation confirms the assumption accepted by us
for Debye plasma, that inclusion of two terms only in the
Mayer-Mayer group expansion (Eqs. (36) and (37)) is ac-
curate enough for calculation of the distribution function
Wa(β) and inhomogeneity tensors B

(t)
a (β). The most im-

portant argument supporting the opinion is presented in
Figure 4, where we find an excellent agreement between
our results and Hooper’s ones [26], which are not lim-
ited by such approximation. We conclude that the discrep-
ancy between Hooper’s function Wa(β) [26] and original
Mozer-Baranger [16] — for the first time reported in refer-
ence [26] — are not caused by differences between models
but by numerical inaccuracies (especially for the function
Ψ

(0)
2 , see Fig. 1) in reference [16].

In Figure 5, the quadrupole function Λ
(2)
a (β) =

Wa(β)B(2)
a (β)/β is presented. This function is more suit-

able for a graphical presentation than the quadrupole
inhomogeneity tensor B

(2)
a (β). (Function Λ

(2)
a (β) was de-

0.8

0.0

Ze = 0

Zp = 1

0 1 2 4β 3
0.0

0.5

W
a(

β)

Fig. 4. The electric microfield distribution function Wa(β)
at a neutral emitter in the case of singly charged perturbers
as a function of the reduced electric field β, for several val-
ues of the screening parameter a = 0.0, 0.2, 0.4, 0.6, and
0.8. The solid lines represent our results, the points repre-
sent Hooper’s results [26], whereas the dashed lines represent
Mozer-Baranger’s [16] results.

( 
2 

)

quadrupole
 
Ze = 0

Zp = 1

0.8

0.0

0.0

0.1

0.2

0.3

0.4

0.5

 Λ
a (

β)

0 1 2 3 4 5 6
β

Fig. 5. The quadrupole function Λ
(2)
a (β) at a neutral emit-

ter in the case of singly charged perturbers as a function of
the reduced electric field β, for several values of the screening
parameter a = 0.0, 0.2, 0.4, 0.6, and 0.8. The solid lines show
results obtained in this paper, while the points represent our
earlier results [7]. The dashed lines indicate the results [9b].

fined by Demura and Sholin in Ref. [3]). Some minimal
differences between our currently obtained values and our
earlier results [7] are caused by a slightly worse numerical
accuracy in [7]. In that paper a smaller number of terms in
sum equation (59) were taken into account, moreover the
terms were ordered in a different way. The disagreement
between our results and those from [9b] is far bigger. It
increases when the screening parameter a increases up to
15% for a = 0.8. Authors in [9b] suggest that a reason
for the discrepancy of their results with [7] is the differ-
ence in the two-body quadrupole auxiliary function Ψ

(2)
2 ,

caused by applying (in [7]) the series expansion of the
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Fig. 6. The two-body quadrupole auxiliary function Ψ
(2)
p=2 ver-

sus the quantity v. The numbers near the lines describe the
number of terms taken into account in equation (59).
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Fig. 7. Ratio of the quadrupole function B

(2)
a (β, Zp = 2) at a

neutral emitter in the case of doubly charged perturbers and

the quadrupole function B
(2)
a (β, Zp = 1) at a neutral emit-

ter in the case of singly charged perturbers as a function of
the reduced electric field β, for several values of the screening
parameter a = 0.0, 0.2, 0.4, 0.6, and 0.8.

two-body correlation function (Eq. (42)). The results of
checking of the series convergence of function Ψ

(2)
2 pre-

sented in Figure 6 contradict this opinion. The first five
terms in sum equation (59) are sufficient to stabilize func-
tion Ψ

(2)
2 . Moreover, we note that function Λ

(2)
a (β) very

weakly depends on Ψ
(2)
2 . Even changing the sign of the

last function does not destroy the 15% discrepancy. Func-
tion Λ

(2)
a (β) depends much more on the two-body dipole

auxiliary function Ψ
(0)
2 . In our opinion, the considered dis-

crepancies can be caused by differences in function Ψ
(0)
2

from [9b] and that from [7].
Figure 7 shows the perturber’s charge effect for the

quadrupole inhomogeneity tensor of the ion microfield.
For two quasi-neutral plasmas of identical temperatures
and of identical electron concentrations, but of different
charges of the ion-perturber Zpe — the quadrupole inho-
mogeneity tensor of the ion microfield is the smaller if the
Zp is larger. This happens because for quasi-neutral plas-
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Fig. 8. The octupole function Λ
(3)
a (β) at a neutral emitter

in the case of singly charged perturbers as a function of the
reduced electric field β, for several values of the screening pa-
rameter a = 0.0, 0.2, 0.4, 0.6, and 0.8.
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Fig. 9. Ratio of the octupole function B
(3)
a (β, Zp = 2) at a neu-

tral emitter in the case of doubly charged perturbers and the

octupole function B
(3)
a (β, Zp = 1) at a neutral emitter in the

case of singly charged perturbers as a function of the reduced
electric field β, for several values of the screening parameter
a = 0.0, 0.2, 0.4, 0.6, and 0.8.

mas the ion density decreases simultaneously. Figures 8
and 9 present the ion octupole inhomogeneity tensors.
The octupole function Λ

(3)
a (β) is defined analogously to

the quadrupole function Λ
(2)
a (β). The interpretation is also

similar.
From a comparison of quadrupole function Λ

(2)
a (β) (in

Fig. 5) with octupole function Λ
(3)
a (β) (in Fig. 8) it fol-

lows results that the importance of screening characteris-
tic of plasma and correlations effects, represented by the
screening parameter a, increases with the increasing order
of the inhomogeneity tensor t. Thus, one can expect that
in strongly-coupled plasmas the importance of the ion mi-
crofield inhomogeneity is relatively larger than in Debye’s
plasmas. In the case of strongly-coupled plasmas such cal-
culation could be also performed using the Mayer-Mayer
cluster expansion if the higher order correction to the pair
correlation are included as in reference [27].
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